## QUESTION 5



## QUESTION 6



| <u> </u>                                                                                                                                              |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 6.2 $\hat{K}_1 + \hat{K}_2 = 90^\circ$<br>$K\hat{P}M = 180^\circ - (90^\circ + 28^\circ)$ sum of $\angle$ 's of $\Delta$<br>$= 180^\circ - 118^\circ$ | ✓<br>∠s in semi / circle                   |
| = 62°                                                                                                                                                 | $\checkmark$ sum of $\angle s$ in $\Delta$ |
| $\Rightarrow K\widehat{P}0 = 62^{\circ} - 28^{\circ}$ $= 34^{\circ}$                                                                                  | √34°                                       |
| $\Rightarrow K\widehat{OP} = 180^{0} - (34^{0} + 34^{0})  sum of \angle's \text{ of } \Delta$                                                         | $\checkmark$ sum of $\angle s$ in $\Delta$ |
| $= 180^{0} - 68^{0}$ $= 112^{0}$                                                                                                                      | √answer                                    |
| OR                                                                                                                                                    |                                            |
| $\hat{L}_1 = 28^0 + 28^0$ ext. $\angle = sum of opp.int. \angle$                                                                                      | √ √ statement and                          |
| $K\widehat{O}P = \widehat{L}_1 + \widehat{K}_2$ ext. $\angle = sum \ of \ opp. $ int. $\angle$<br>$K\widehat{O}P = 56^0 + 56^0$                       | reason  ✓✓ statement and reason            |
| =1120                                                                                                                                                 | √answer (5)                                |
|                                                                                                                                                       | [11]                                       |

## QUESTION 7

| 7.1.1 | $OB = EB = x + 8 \ radii$                                          | ✓answer (1)           |
|-------|--------------------------------------------------------------------|-----------------------|
|       |                                                                    |                       |
| 7.1.2 | In ΔOBD                                                            |                       |
|       | $O\hat{D}B = 90^{\circ}$ line from centre to midpoint of the chord | ✓90°                  |
|       | $OD^2 + DB^2 = OB^2$ Pythagoras theorem                            | ✓ formula<br>✓ subst. |
|       | $x^2 + 12^2 = (x+8)^2$                                             | Sabst.                |
|       | 144 = 16x + 64                                                     |                       |
|       |                                                                    |                       |
|       | $16x = 80 \Longrightarrow x = 5$                                   | ✓answer               |
|       | $\therefore OB = 5 + 8 = 13cm$                                     | (4)                   |
| 7.2.1 | $x = 180^{\circ} - (68^{\circ} + 68^{\circ})$                      | V V                   |
|       | $=180^{\circ}-136^{\circ}$                                         | sum of ∠s of ∆        |
|       | $=44^{\circ}$                                                      | ✓Answer               |
|       |                                                                    | (3)                   |
| 7.2.2 | $\widehat{B}_1 = 32^{\circ} \tan chord \ theorem$                  | √tan chord            |
|       | $y = 180^{\circ} - (36^{\circ} + 32^{\circ})$                      | theorem               |
|       | $=180^{\circ}-68^{\circ}$                                          | ✓ sum of ∠s of ∆      |
|       |                                                                    | ✓Answer               |
|       | =112°                                                              | (3)                   |