MEMO SEQUENCES & SERIES

MAY/JUNE 2023

QUESTIC	ON 3/VRAAG 3	
3.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$2a = 10 \qquad 3a + b = 0$ $a = 5 \qquad b = -15$	$ \begin{array}{l} \checkmark 2a = 10 \\ \checkmark 3a + b = 0 \end{array} $
	$T_3 - x - 0 = 10$ $\therefore T_3 = x + 10$	✓ T ₃ = x+10
	$2x + T_3 = 28$ $2x + x + 10 = 28$	$\checkmark 2x + T_3 = 28$
	3x = 18 $x = 6$	✓ x = 6
	a+b+c=6 5-15+c=6 c=16	√5-15+c=6 (6)
	$T_n = 5n^2 - 15n + 16$	(0)
	OR/OF	OR/OF
	$2a = 10$ $\therefore a = 5$	✓ 2a=10
	$T_1 = a+b+c$ $T_2 = 4a+2b+c$ $T_3 = 9a+3b+c$ = $5+b+c$ = $20+2b+c$ = $45+3b+c$	
	5+b+c = 20+2b+c b = -15	$\sqrt{5+b+c} = 20+2b+c$
	$T_1 = -10 + c$ $T_2 = -10 + c$ $T_3 = c$	$ \checkmark T_1 = -10 + c $ $ \checkmark T_2 = -10 + c $
	$T_1 + T_2 + T_3 = -10 + c - 10 + c + c$ 28 = 3c - 20 c = 16	$\checkmark 28 = 3c - 20$ $\checkmark c = 16$ (6)

NOV 2022 a = 14 2.1.1 $T_6 = 14r^5 = 448$ $\sqrt{T_6} = 14r^5 = 448$ $r^{5} = 32$ $\therefore r = 2$ $T_{n} = 14(2)^{n-1}$ Answer only: full marks 2.1.2 ✓ substitution into correct $S_n = \frac{14(2^6 - 1)}{2 - 1}$ formula $\checkmark S_e = 882$ $S_6 = 882$ 114 674 - 882 = 113 792 113 792 = 896(2*-1) $128 = 2^n$ √ 128 = 2ⁿ n = 7√7 (4) OR/OF OR/OF ✓ substitution into correct formula $8191 = 2^n - 1$ $\sqrt{2}$ = 8192 $2^{*} = 8192$ $n = \log_2 8192$ $\sqrt{n} = 13$ n = 13.. 7 more terms must be added to the first 6 terms. OR 448r5 = 14 2.1.3 $\therefore r = \frac{1}{2}$ √ substitution √ answer $S_{\infty} = 896$

^

_	NSC/NSS = MAKING Ontorines/Nation/	ig () we		Ŋ	OV 2022	2		
2.2	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$			ľ	QUESTI	ION 3/VR4AG 3		
	$T_1 = \frac{1}{6}$ $T_2 = \frac{1}{3} + \frac{1}{6} = \frac{3}{6}$	$\checkmark T_1 = \frac{1}{6}$			3.1	3a + b = 7	√ 3a+b=7	
						3+b=7	$\sqrt{3+b} = 7$	(2)
	$d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$	√ d				b = 4		
	$\frac{121}{6} = \frac{n}{2} \left[2 \left(\frac{1}{6} \right) + (n-1) \left(\frac{1}{3} \right) \right]$	✓ substitution				OR/OF	OR/OF	
	6 2[(6) ((3)]					$T_2 - T_1 = 7$	$\sqrt{T_2 - T_1} = 7$	
	121 [1 1 1]					4+2b+9-(1+b+9)=7	✓ substitution	(2)
	$\left[\frac{121}{3} = n \left[\frac{1}{3} + \frac{1}{3}n - \frac{1}{3} \right] \right]$				2.2	b = 4		
	121 1				3.2	$T_n = n^2 + 4n + 9$		
	$\frac{121}{3} = \frac{1}{3}n^2$					$T_{60} = (60)^2 + 4(60) + 9$ Answer only: full marks	✓ substitution	
	$121 = n^2$				3.3	= 3849 Allswer only, full final as 14; 21; 30; 41;	✓ answer	(2)
	n = 11	✓ value of n			3.3	First difference: 7;9;11;	√first difference	
	∴ k = 10	✓ value of k (5)				Common 2 nd difference: 2	✓ 2	
	OR/OF	OR/OF				$T_p = 2p + 5$ Answer only: full marks	√2p+5	(3)
	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$			Д		OD/OF		
			ľ	ĭ.		OR/OF First difference: 7; 9; 11;	OR/OF ✓ first difference	
	$a = \frac{1}{6}$	$\sqrt{a} = \frac{1}{6}$				$T_n = a + (n-1)d$	• inst difference	
	$l = \frac{1}{3}k + \frac{1}{6}$	0				$T_p = 7 + (p-1)(2)$	✓ 2	
	l = 3R + 6	✓1				$T_p = 2p + 5$	√2p+5	(3)
	n = k + 1	$\sqrt{n-k+1}$			3.4	157 = 2p + 5	$\sqrt{157} = 2p + 5$	
	$S_n = \frac{n}{2}[a+l]$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				p = 76	$\sqrt{p} = 76$	
	S ₈ - 2 (a + 1)					∴ Between T ₇₆ and T ₇₇	$\checkmark T_{76}$ and T_{77}	(3)
	$\left[\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{6} + \frac{1}{3}k + \frac{1}{6} \right] \right]$					OR/OF	OR/OF	
	121 8-151 17					$T_{s=1} - T_s = 157$	$\checkmark T_{n+1} - T_n = 157$	
	$\left[\frac{121}{6} - \frac{k+1}{2} \left[\frac{1}{3}k + \frac{1}{3}\right]\right]$					$(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$		
	121 2.1[2.1]					$n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$		
	$\left[\frac{121}{6} = \frac{k+1}{2} \left[\frac{k+1}{3} \right] \right]$					2n=152		
						n = 76	✓ n = 76	
	$\frac{121}{6} = \frac{(k+1)^2}{6}$	$\sqrt{\frac{121}{6}} = \frac{(k+1)^2}{6}$				∴ Between T ₇₆ and T ₇₇	$\checkmark T_{76}$ and T_{77}	(3)
	$\ddot{k} + 1 = \pm \sqrt{121}$ $\ddot{k} + 1 = 11$	6 6						[10]
	k+1=11 k=10	✓ value of k (5)		<u>\</u> -		0		
		[14]	l					

Arithmetic series and sequences

June 2018

Q2.1.1

37;50

Q2.1.2

$$a = \frac{\text{second difference}}{2} = \frac{2}{2} = 1$$

$$3a + b = 5$$

$$3 + b = 5$$

$$b = 2$$

$$a + b + c = 5$$

$$1 + 2 + c = 5$$

$$c = 2$$

$$T_n = an^2 + bn + c$$

$$= n^2 + 2n + 2$$

Q2.1.3

$$n^{2} + 2n + 2 = 1765$$

 $n^{2} + 2n - 1763 = 0$
 $(n + 43)(n - 41) = 0$
 $n = -43$ or $n = 41$
N/A

Q2.2

Sum of all multiples of 7 from 35 to 196:

$$a = 35; d = 7$$

$$S_n = \frac{n}{2} [a + \ell]$$

$$= \frac{24}{2} [35 + 196]$$

$$= 12[231]$$

$$= 2772$$

Sum of all the natural numbers from 35 to 196:

$$a = 35$$
; $d = 1$; $n = 162$
 $S_n = \frac{n}{2}[a + \ell]$
 $= \frac{162}{2}[35 + 196]$
 $= 81[231]$
 $= 18711$
Sum of numbers not divisible by 7/
Som van getalle nie deelbaar deur 7
 $= 18711 - 2772$
 $= 15939$

March 2018

Q3.1

-1;2;5

$$T_n = -1 + (n-1)(3)$$

= $3n - 4$

Q3.2

$$T_{43} = 3(43) - 4$$
$$= 125$$

Q3.3

$$T_n = 3n - 4$$

$$\sum_{k=1}^{n} T_k = 3(1) - 4 + 3(2) - 4 + 3(3) - 4 + \dots + 3n - 4$$

$$= 3(1 + 2 + 3 + \dots + n) - 4n$$

$$= \frac{3n(n+1)}{2} - 4n$$

$$= \frac{3n^2 - 5n}{2}$$

Q3.4

$$T_{11} = (T_{11} - T_{10}) + (T_{10} - T_{9}) + (T_{9} - T_{8}) + ... + (T_{3} - T_{2}) + (T_{2} - T_{1}) + T_{1}$$

$$125 = 29 + 26 + 23 + \dots + 2 + T_1$$

$$= \frac{10}{2}(29 + 2) + T_1$$

$$= 155 + T_1$$

$$T_1 = -30$$

November 2017:

Q2.1.1

first differences: -9: -15: -21 second difference = -6

Q2.1.2

$$T_n = an^2 + bn + c$$

$$a = \frac{\text{second difference}}{2} = -3$$

$$3a + b = -9$$

$$3(-3) + b = -9$$

$$b = 0$$

$$a + b + c = 5$$

$$-3 + 0 + c = 5$$

$$c = 8$$

 $T_n = -3n^2 + 8$

Q2.1.3

$$-3n^{2} + 8 = -25939$$

$$-3n^{2} = -25947$$

$$n^{2} = 8649$$

$$n = -93 \text{ or } n = 93$$

The 93rd term has a value of -25 939

June 2017:

First differences: 17: 15

Q3.1

Second difference: -2 $T_n = an^2 + bn + c$ $a = \frac{\text{second difference}}{2} = \frac{-2}{2} = -$ 3a + b = 173(-1)+b=17b = 20a+b+c=0-1+20+c=0c = -19 $T_n = -n^2 + 20n - 19$ Q3.2 $56 = -n^2 + 20n - 19$ $n^2 - 20n + 75 = 0$ (n-15)(n-5)=0n = 5 or n = 15Q3.3 $=T_5+T_6+T_7+T_8+T_9+T_{10}-T_{11}-T_{12}-T_{13}-T_{14}-T_{14}$ $=(T_5-T_{15})+(T_6-T_{14})+...+(T_9-T_{12})+T_{10}$ because by symmetry $T_s = T_{1s}$; $T_6 = T_{14}$...

 $T_{10} = -(10)^2 + 20(10) - 19$

= 81

March 2017:

Q3.1.1

24

Q3.1.2

$$2a = 3$$

$$a=\frac{3}{2}$$

$$b = -\frac{9}{2}$$

$$T_n = \frac{3}{2}n^2 - \frac{9}{2}n + 9$$

$$a+b+c=6$$

$$c = 9$$

Q3.1.3

$$\frac{3}{2}n^2 - \frac{9}{2}n + 9 = 3249$$
$$3n^2 - 9n + 18 = 6498$$
$$3n^2 - 9n - 6480 = 0$$
$$n^2 - 3n - 2160 = 0$$
$$(n + 45)(n - 48) = 0$$

$$n \neq -45$$
 or $n = 48$

Q3.2

$$-1$$
; $2\sin 3x$; 5; ...

$$2\sin 3x + 1 = 5 - 2\sin 3x$$

$$4\sin 3x = 4$$

$$\sin 3x = 1$$

$$3x = 90^{\circ}$$

$$x = 30^{\circ}$$

Nov 2019

Q3.1

$$\begin{split} &\sum_{y=3}^{10} \frac{1}{y-2} - \sum_{y=3}^{10} \frac{1}{y-1} \\ &= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8}\right) - \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{9}\right) \\ &= 1 - \frac{1}{9} \\ &= \frac{8}{9} \end{split}$$

Nov 2019

Q2.2.1

$$a = \frac{5}{8} \quad ; \quad r = \frac{1}{2} \quad ; \quad n = 21$$

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$S_{21} = \frac{\frac{5}{8} \left(1 - \left(\frac{1}{2}\right)^{21}\right)}{1 - \frac{1}{2}}$$

$$= 1,2499...$$

$$= 1,25$$

$$T_{n} > \frac{5}{8192}$$

$$ar^{n-1} > \frac{5}{8192}$$

$$\frac{5}{8} \left(\frac{1}{2}\right)^{n-1} > \frac{5}{8192}$$

$$\left(\frac{1}{2}\right)^{n-1} > \frac{1}{1024}$$

$$\left(\frac{1}{2}\right)^{n-1} > \left(\frac{1}{2}\right)^{10}$$

$$\therefore n - 1 < 10$$

$$n < 11$$

$$\therefore n = 10$$

May-June 2019

Q2.2.1

$$r = \frac{-18}{36} = -\frac{1}{2}$$
Q2.2.2
$$T_n = 36\left(-\frac{1}{2}\right)^{n-1}$$

$$\frac{9}{4096} = 36\left(-\frac{1}{2}\right)^{n-1}$$

$$\frac{1}{16384} = \left(-\frac{1}{2}\right)^{n-1}$$

$$\left(-\frac{1}{2}\right)^{14} = \left(-\frac{1}{2}\right)^{n-1}$$

$$14 = n - 1$$

$$n = 15$$
Q2.2.3
$$S_{\infty} = \frac{a}{1 - r}$$

$$= \frac{36}{1 - \left(-\frac{1}{2}\right)}$$

$$= 24$$

Q2.2.4

$$\begin{split} &\frac{T_1 + T_3 + T_5 + T_7 + \dots + T_{499}}{T_2 + T_4 + T_6 + T_8 + \dots + T_{500}} \\ &= \frac{a + ar^2 + ar^4 + \dots + ar^{498}}{ar + ar^3 + ar^5 + \dots + ar^{499}} \\ &= \frac{a + ar^2 + ar^4 + \dots + ar^{498}}{r(a + ar^2 + ar^4 + \dots + ar^{498})} \\ &= \frac{1}{r} \end{split}$$

Nov 2018

$$r = \frac{1}{2}$$
 and $S_w = 6$

$$S_{\infty} = \frac{a}{1 - r}$$

$$6 = \frac{a}{1 - \frac{1}{2}}$$

$$a = 3$$

$$Q3.2$$

$$T_n = ar^{n-1}$$

$$T_8 = 3\left(\frac{1}{2}\right)^7$$

$$T_8 = \frac{3}{128}$$

Q3.3
$$\sum_{k=1}^{n} 3(2)^{1-k} = 5.8125$$

$$3 + \frac{3}{2} + \frac{3}{4} + \dots = 5,8125$$

$$S_n = \frac{a(1-r^n)}{1-r} = 5.8125$$

$$\frac{3\left[1 - \left(\frac{1}{2}\right)^{\kappa}\right]}{1 - \frac{1}{2}} = 5,8125$$

$$6\left[1-\left(\frac{1}{2}\right)^{n}\right]=5,8125$$

$$\left(\frac{1}{2}\right)^n = \frac{1}{32} = 0,03125$$

$$2^{-n} = 2^{-5}$$

$$n = 5$$

$$\sum_{k=1}^{20} 3(2)^{1-k} = p$$

$$\sum_{k=2}^{20} 6(2)^{-k} = p$$

$$\therefore \sum_{k=2}^{20} 24(2)^{-k} = 4p$$

June 2018

Q3.1

$$r = 0.94$$
; $a = 100$

$$T_3 = ar^2$$

$$=100(0,94)^2$$

$$= 88,36 \text{ km}$$

Q3.2

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$750 = \frac{100(0.94^n - 1)}{0.94 - 1}$$

$$\frac{750(-0.06)}{100} = 0.94^n - 1$$

$$0.94^n = 1 - \frac{9}{20}$$

$$0.94^n = 0.55$$

$$n = \frac{\log 0,55}{\log 0,94}$$

$$=9,66$$

He will pass halfway mark on the tenth day.

Q3.3

$$S_{\infty} = \frac{a}{1 - r}$$

$$1500 < \frac{100}{1-r}$$

$$1-r < \frac{100}{1500}$$

$$r > \frac{14}{15}$$
 or 93,33%

March 2018

Q2.1.1

$$30; 10; \frac{10}{3}.....$$

$$a = 30$$
 $r = \frac{1}{3}$

$$T_n=ar^{n-1}$$

$$\frac{10}{729} = 30 \left(\frac{1}{3}\right)^{n-1}$$

$$\frac{1}{2187} = 3^{1-n}$$

$$3^{-7} = 3^{1-n}$$

$$-7 = 1 - n$$

$$n = 8$$

Q2.1.2

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{30}{1-\frac{1}{3}}$$

$$= 45$$

$$S_n = a + (a + d) + \dots + (a + (n - 2)d) + T_n$$

$$S_n = T_n + (T_n - d) + (T_n - 2d) + \dots + a$$

$$2S_n = (a + T_n) + (a + T_n) + (a + T_n) + \dots + (a + T_n)$$

$$S_n = \frac{n}{2}(a + T_n)$$
but $Tn = a + (n - 1)d$

$$S_n = \frac{n}{2}[2a + (n - 1)d]$$

Q2.2

$$S_n = a + (a + d) + \dots + (a + (n - 2)d) + T_n$$

$$S_n = T_n + (T_n - d) + (T_n - 2d) + \dots + a$$

$$2S_n = (a + T_n) + (a + T_n) + (a + T_n) + \dots + (a + T_n)$$

$$S_n = \frac{n}{2}(a + T_n)$$
but $Tn = a + (n - 1)d$

$$S_n = \frac{n}{2}[2a + (n - 1)d]$$

November 2017:

Q3.1

$$a + ar = 2$$

$$a(1+r) = 2$$

$$a = \frac{2}{1+r}$$

Q3.2

$$S_{\infty} = T_1 + T_2 + \sum_{n=3}^{\infty} T_n$$

$$S_{\infty} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = 2 + \frac{1}{4}$$

$$\frac{a}{1-r} = \frac{9}{4}$$

$$\left(\frac{2}{1+r}\right) \times \left(\frac{1}{1-r}\right) = \frac{9}{4}$$

$$\frac{2}{1-r^2} = \frac{9}{4}$$

$$8 = 9 - 9r^2$$

$$9r^2 = 1$$

$$r = \frac{1}{3}$$

$$a = \frac{3}{2}$$

June 2017:

Q2.1.1

3; 2;
$$k$$
; ... $r = \frac{2}{3}$

Q2.1.2

$$r = \frac{T_3}{T_2}$$

$$T_3 = r \times T_2$$

$$= \frac{2}{3} \times 2$$

$$= \frac{4}{3}$$
Thus $k = \frac{4}{3}$

Q2.1.3

$$T_n = ax^{n-1}$$

$$\frac{128}{729} = 3 \times \left(\frac{2}{3}\right)^{n-1}$$

$$\left(\frac{2}{3}\right)^{n-1} = \frac{128}{2187}$$

$$\left(\frac{2}{3}\right)^{n-1} = \left(\frac{2}{3}\right)^{n}$$

$$n-1=7$$
$$n=8$$

March 2017:

Q2.1

For geometric:

$$-\frac{1}{4}; b; -1; \dots$$

$$\frac{b}{-\frac{1}{4}} = -\frac{1}{b}$$

$$b^2 = \frac{1}{4}$$

$$b = \pm \frac{1}{2}$$

Q2.2

$$-\frac{1}{4}; \frac{1}{2}; -1; \dots$$

$$r = -2$$

$$T_{19} = ar^{18}$$

$$= \left(-\frac{1}{4}\right)(-2)^{15}$$

$$= \left(-\frac{2^{18}}{2^2}\right)$$

$$= -2^{16}$$

$$= -65536$$

Q2.3

The series is:

$$-\frac{1}{4}; \frac{1}{2}; -1; 2; -4; 8; ...$$

The new positive series is:

$$\frac{1}{2}$$
; 2; 8; 32; 128

$$a = \frac{1}{2} \qquad r = 4$$

$$\sum_{n=1}^{20} \left(\frac{1}{2}\right) (4)^{n-1}$$

Or you could write it as:

$$\sum_{p=0}^{19} \left(\frac{1}{2}\right) (4)^p$$

Q2.4

No, the series is not convergent r = 4 and for convergence -1 < r < 1

NSC/NSS - Marking Outdennes/Nasienrigtyne				
2.2	$\sum_{p=0}^{k} \left(\frac{1}{3}p + \frac{1}{6}\right) = 20\frac{1}{6}$ $T_1 = \frac{1}{6} \qquad T_2 = \frac{1}{3} + \frac{1}{6} = \frac{3}{6}$ $d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$ $\frac{121}{6} = \frac{n}{2} \left[2\left(\frac{1}{6}\right) + (n-1)\left(\frac{1}{3}\right) \right]$	$\checkmark T_1 = \frac{1}{6}$ $\checkmark d$ $\checkmark \text{ substitution}$		
	$\frac{121}{3} = n \left[\frac{1}{3} + \frac{1}{3}n - \frac{1}{3} \right]$ $\frac{121}{3} = \frac{1}{3}n^2$ $121 = n^2$ $n = 11$	\checkmark value of n		
	$\therefore k = 10$ OR /OF $\sum_{p=0}^{k} \left(\frac{1}{3}p + \frac{1}{6}\right) = 20\frac{1}{6}$ $a = \frac{1}{6}$	✓ value of k OR/OF ✓ $a = \frac{1}{6}$	(5)	
	$l = \frac{1}{3}k + \frac{1}{6}$ $n = k + 1$ $S_n = \frac{n}{2}[a + l]$ $\frac{121}{6} = \frac{k + 1}{2} \left[\frac{1}{6} + \frac{1}{3}k + \frac{1}{6} \right]$	$\checkmark l$ $\checkmark n = k + 1$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{3}k + \frac{1}{3} \right]$ $\frac{121}{6} = \frac{k+1}{2} \left[\frac{k+1}{3} \right]$			
	$\frac{121}{6} = \frac{(k+1)^2}{6}$ $k+1 = \pm\sqrt{121}$ $k+1 = 11$ $k = 10$	$\checkmark \frac{121}{6} = \frac{(k+1)^2}{6}$ $\checkmark \text{ value of } k$	(5) [14]	

NOV 2022

QUESTION 3/VRAAG 3

3.1	3a+b=7	$\checkmark 3a+b=7$		
	3 + b = 7	✓ 3 + b = 7	(2)	
	<i>b</i> = 4			
	OR/OF	OR/OF		
	$T_2 - T_1 = 7$	$\checkmark T_2 - T_1 = 7$		
	4+2b+9-(1+b+9)=7	✓ substitution	(2	
	b = 4			
3.2	$T_n = n^2 + 4n + 9$			
	$T_{60} = (60)^2 + 4(60) + 9$	√ substitution		
	$T_{60} = (60)^2 + 4(60) + 9$ = 3849 Answer only: full marks	✓ answer	(2)	
3.3	14; 21; 30; 41;		4	
	First difference: 7; 9; 11;	√first difference		
	Common 2 nd difference: 2	√ 2		
	$T_p = 2p + 5$ Answer only: full marks	$\sqrt{2p+5}$	(3)	
	2p 2p 1	1		
	OR/OF	OR/OF		
	First difference: 7; 9; 11;	√first difference		
	$T_n = a + (n-1)d$	✓2		
	$T_p = 7 + (p-1)(2)$	V 2		
	$T_p = 2p + 5$	$\checkmark 2p+5$	(3)	
3.4	157 = 2p + 5	$\sqrt{157} = 2p + 5$		
	p = 76	$\checkmark p = 76$		
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3	
	OR/OF	OR/OF		
	$T_{n+1} - T_n = 157$	$\checkmark T_{n+1} - T_n = 157$		
	$(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$			
	$n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$			
	2n = 152			
	n = 76	$\sqrt{n} = 76$		
	\therefore Between T_{76} and T_{77}	✓ T_{76} and T_{77}	(3)	
			[10	