Organic reactions

Part 1

Organic reactions

- Combustion/ Oxidation
- Esterification
- Addition reactions

- Elimination reactions
- Substitution reactions
- Cracking:
 - Thermal
 - Catalytic

Important

- You need to be able to identify:
 - reactants
 - products
 - reaction conditions
- Structural formulae
- IUPAC naming

Esterification

Acid-catalyzed condensation

Reactants: Alcohols and carboxylic acids

Ethanol

Methanoic acid

Esterification

Ethanol

Methanoic acid

Esterification

Products: Ester and water

Ethyl methanoate (Ethanol) (Methanoic acid)

Unsaturated compound -> Saturated compound

(Hydrogenation)

 $H_2(g)$ + alkene moves over catalyst.

The process is used to make margarine from plant oils.

H
$$C = C$$
 H
 $+ H_2$
 \xrightarrow{Pt}
 $H - C - C - H$
 $H H$
 $ethene$
 $ethane$

(Hydrogenation)

Reaction conditions:

Alkene dissolved in non-polar solvent

Catalyst: Pt, Ni, Pd

H
C = C
H
+ H
$$^{\text{Pt}}$$
H
C = C
H
H
H
ethene

(Halogenation)

Bubble a halogen through an alkene

$$\begin{array}{c} H \\ H \\ C = C \\ H \end{array} + Br_2 \rightarrow H - \begin{array}{c} Br H \\ I & I \\ C - C - H \\ I & H \\ Br \end{array}$$

ethene

1,2-dibromoethane

(Halogenation)

Reaction conditions:

Absence of water! NO water!

ethene

1,2-dibromoethane

(Hydrohalogenation)

Bubble a hydrogen halide through an alkene.

ethene

bromoethane

(Hydrohalogenation)

Reaction conditions:

Markovnikov's rule will apply!

Absence of water! NO water!

ethene

bromoethane

(Markovnikov's rule)

The carbon with the most hydrogens will get another hydrogen. (Main product)

Addition reaction Markovnikov's (Hydration)

rule will apply!

Industry – preparation of alcohols. H₂PO₄ is used as catalyst

H
C = C
H
+
O
$$\xrightarrow{H_3PO_4}$$
H
C - C - H
H
H
H
ethene

ethanol

(Hydration)

Reaction conditions:

Catalyst: Strong, dilute acid

Heat in form of steam

H C = C + O
$$\xrightarrow{H_3PO_4}$$
 H - C - C - H H H H ethene ethanol

Elimination reaction

Saturated compound → Unsaturated compound e.g. Ethanol moved across a hot catalyst

Zaitzev's rule

Elimination reaction

The carbon next to the hydroxyl with the least amount of hydrogens will lose a hydrogen to form a double bond

Elimination reaction Zaitzev's (Dehydrohalogenation) rule will apply!

Reaction conditions:

Concentrated NaOH or KOH in ethanol as solvent; strong heat

bromoethane

ethene

Elimination reaction

(Dehydration) Reaction conditions:

Zaitzev's rule will apply!

Catalyst: Strong conc acid in excess; heating of alcohol

H-O H
H-C-C-H
$$\xrightarrow{H_3PO_4}$$
 H-C=C-H + O
Heat H H H ethanol ethene

Elimination reaction (Cracking)

Thermal cracking

Catalytic cracking

Saturated compound is cracked to produce an unsaturated compound

Substitution reaction

Halogenation (e.g. Alkanes)

$$A-B + C \rightarrow A-C + B$$

Methane Chlorine Chloromethane

Substitution reaction

Hydrohalogenation (e.g. Tertiary alcohols)

Substitution reaction Hydrolysis (e.g. Halo-alkanes)

$$\begin{array}{c} H & H \\ H - C - C - H + KOH \xrightarrow{ethanol} H - H - H + KBr \\ heat & H & OH \end{array}$$

QUESTION 1

The flow diagram below shows the preparation of an ester using prop-1-ene as a starting reagent. P, Q, R and S represent different organic reactions.

(1)

(3)

- 1.2 For reaction **P** write down the:
 - 1.2.1 Type of addition reaction
 - 1.2.2 Balanced equation using structural formulae

1.4	In reaction S propan-1-ol reacts with ethanoic acid to form the ester. For this reaction write down the:		
	1.4.1	Name of the reaction that takes place	(1)
	1.4.2	FORMULA or NAME of the catalyst needed	(1)
	1.4.3	Structural formula of the ester formed	(2)
	1.4.4	IUPAC name of the ester formed	(2)

1.5 The propan-1-ol formed in reaction **R** can be converted to prop-1-ene. Write down the FORMULA or NAME of the inorganic reagent needed. (1)