

TECHNICAL SCIENCES SUPPORT MATERIAL

TOPIC 7: ELECTRONIC PROPERTIES OF MATTER

GRADE 12

MARCH 2018

This document consists of seven pages.

TOPIC 7: ELECTRONIC PROPERTIES OF MATTER

Prescribed content

Semiconductor

- A semiconductor is a material which has electrical conductivity between that of a conductor and an insulator such as glass.
- Explain semiconductor with an example. (No energy band theory).

Intrinsic semiconductor

An intrinsic semiconductor is a pure semiconductor.

Doping

• Doping is the process of adding impurities to intrinsic semiconductors.

Types of semiconductors

- Discuss n-type semiconductor.
- Discuss p-type semiconductor.
- Discuss the construction and working of a p-n junction diode.
- Study the characteristics of p-n junction diode.

Experiment 6: Study the characteristics of a p-n junction diode

YouTube Videos

Number	Duration	Topic
1	7:53	https://www.youtube.com/watch?v=Coy-WRCfems
2	6:36	https://www.youtube.com/watch?v=OyC02DWg3mI
3	10.36	https://www.youtube.com/watch?v=TFgWDcBp-uY

Websites (internet connection needed)

Website	Topic
https://www.electronics-	PN Junction Diode
tutorials.ws/diode/diode 3.html	

Mind map

Important terms/definitions

Semiconductor	A semiconductor is a material which has electrical conductivity between that of a conductor and an insulator such as glass.		
Intrinsic semiconductor	An intrinsic semiconductor is a pure semiconductor e.g. silicon.		
Doping	Doping is the process of adding impurities to intrinsic semiconductors.		
p-type semiconductor	A semiconductor material with an excess of positive charge carriers. (holes)		
n-type semiconductor	A semiconductor material with an excess of negative charge carriers. (electrons)		
p-n junction diode	Formed when a p-type material is combined with the n-type material by means of a special manufacturing process.		

Activity 7.1

Exercise 1.1 Page 175 in textbook Chapter revision Page 179

Experiment 6: Characteristics of p-n junction diode

Method 1

Aim: To study the characteristics of a p-n junction diode

Theory/background

The diode is a device formed from a junction of n-type and p-type semiconductor material. In this experiment, you will connect a p-n junction diode (1N4007) in series to a variable power source and a 1 k Ω resistor. You will build this circuit to determine the voltage across the diode, as well as the current through the circuit, when we change the supply voltage to the circuit.

Apparatus/materials

- Variable voltage power supply (0-20 volt DC)
- Milliammeter (0-25 mA DC)
- 1N4007 p-n junction diode
- 1 000 Ω resistor
- Voltmeter (0-20 volt DC)
- Connecting wires
- Graph paper

Method/procedure

- 1. Connect the apparatus as shown in the Figure.
- 2. Switch the supply on and adjust the variable power supply to zero volts.
- 3. Adjust the power supply to the different voltages as indicated in the table below. Measure and record the voltage and current readings (forward biased).
- 4. Reverse the p-n junction diode around in the circuit and repeat steps 2 and 3 (reverse biased).
- 5. Record the results in the following table.

Results

Forward Bias			Reverse Bias	
V(Diode)	I(Diode)	V(supply)	V(Diode)	V(Diode)
		0		
		0.5		
		1.0		
		1.5		
		2.0		
		2.5		
		3.0		
		6.0		
		8.0		
		10		

Method 2

INVESTIGATING THE FORWARD BIAS CHARACTERISTICS OF A DIODE

Aim: To study the characteristics of a p-n junction diode

YOU WILL NEED: Circuit Board Mounted diode

Cell holder and pin Mounted 20 $k\Omega$ variable resistor

1.5 V D cell 2 Multimeters

Connecting leads Small screwdriver to adjust variable

resistor

YOU NEED TO KNOW:

> The light grey ring end of the diode is the negative end of the diode.

WHAT TO DO:

1. Set up the circuit as shown below.

Picture of Circuit setup

- 2. Set one of the multimeters on the 200 mA setting and connect this in series with the circuit as shown.
- 3. Set the other multimeter on the 20 V setting and connect it across the diode as shown.
- 4. Set the variable resistor on maximum resistance.
- 5. Draw up a two column table with Voltage (V) and Current (I) columns.
- 6. Use the screwdriver to slowly reduce the resistance on the variable resister. Note that the voltage across the diode start and the current in the circuit start to increase.
- 7. Increase the voltage by 0,01 V at a time **and record the V and I readings at each stage.**
- 8. Continue to do this until the current reading reaches 200 mA.
- 9. Plot a graph of V vs. I from the readings taken.

Analysis of results

- 1. The p-n junction diode started to conduct from aboutV.
- 2. When the input voltage reaches V, there will be a sharp increase in the current flowing through the diode.

Conclusions

- 1. During the forward bias condition, with the supply voltage between 0 V and... V, no current flows through the diode. It is only when the supply voltage is increased to above V that the current starts to flow through the diode.
- 2. During the reverse bias condition, no current flows through the diode, irrespective of the value of the supply voltage.
- 3. Ohm's Law does not apply to p-n junction diodes