

NOTES SEQUENCES AND SERIES:**1. Quadratic number pattern: (Second difference is a constant)**

- General Term: $T_n = an^2 + bn + c$
- There is NO formulae for the Sum of a Quadratic number Pattern:
-

So, consider the previous number pattern: 2; 5; 10; 17; 26;

It is clearly a quadratic number pattern because it has a constant second difference. You can now proceed as follows:

$$\begin{aligned}
 2a &= 2 & 3a + b &= 3 & a + b + c &= 2 \\
 \therefore a &= 1 & \therefore 3(1) + b &= 3 & \therefore 1 + 0 + c &= 2 \\
 & & \therefore b &= 0 & \therefore c &= 1
 \end{aligned}$$

Therefore the general term is $T_n = n^2 + 0n + 1 = n^2 + 1$

EXAMPLE

6; 15; x ; 45; is a quadratic number pattern (sequence). Determine the value of x .

$$\begin{array}{ccccccc}
 6 & 15 & x & 45 & & & \\
 & 9 & x-15 & 45-x & & & \\
 & (x-15)-9 & (45-x)-(x-15) & & & & \\
 & & & & (x-15)-9 = (45-x)-(x-15) & & \\
 & & & & \therefore x-24 = 45-x-x+15 & & \\
 & & & & \therefore x-24 = 60-2x & & \\
 & & & & \therefore 3x = 84 & & \\
 & & & & \therefore x = 28 & &
 \end{array}$$

EXAMPLE

The constant second difference of the quadratic number pattern:

4; x ; 8; y ; 20; is 2.

- Determine the value of x and y .
- Determine which term equals 125.

DO THE SOLUTION

QUESTION 3

3.1 Consider the quadratic number pattern: 3 ; 7 ; 12 ; ...

3.1.1 Show that the general term of this number pattern is given by

$$T_n = \frac{1}{2}n^2 + \frac{5}{2}n. \quad (3)$$

3.1.2 What number must be added to T_{n-1} so that $T_n = 13 527$? (4)

2.2 The following information is given about a quadratic number pattern:

$$T_1 = 3, T_2 - T_1 = 9 \text{ and } T_3 - T_2 = 21$$

2.2.1 Show that $T_5 = 111$ (2)

2.2.2 Show that the general term of the quadratic pattern is $T_n = 6n^2 - 9n + 6$ (3)

2.2.3 Show that the pattern is increasing for all $n \in N$. (3)
[16]

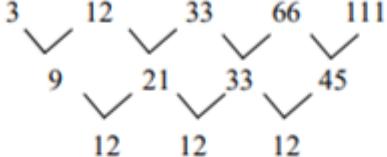
QUESTION 3

A quadratic sequence has the following properties:

- The second difference is 10.
- The first two terms are equal, i.e. $T_1 = T_2$.
- $T_1 + T_2 + T_3 = 28$

3.1 Show that the general term of the sequence is $T_n = 5n^2 - 15n + 16$. (6)

3.2 Is 216 a term in this sequence? Justify your answer with the necessary calculations. (3)
[9]


QUESTION 3

It is given that the general term of a quadratic number pattern is $T_n = n^2 + bn + 9$ and the first term of the first differences is 7.

- 3.1 Show that $b = 4$. (2)
- 3.2 Determine the value of the 60th term of this number pattern. (2)
- 3.3 Determine the general term for the sequence of first differences of the quadratic number pattern. Write your answer in the form $T_p = mp + q$. (3)
- 3.4 Which TWO consecutive terms in the quadratic number pattern have a first difference of 157? (3)
[10]

QUESTION 3/VRAAG 3

SEQUENCES AND SERIES (QUADRATIC NUMBER PATTERN)

2.2.1	$T_1 = 3$; $T_2 - T_1 = 9$ and $T_3 - T_2 = 21$ $\therefore T_5 = 3 + 9 + 21 + 33 + 45 = 111$ OR/OF $2a = 12$ $a = 6$ $3(6) + b = 9$ $b = -9$ $6 - 9 + c = 3$ $T_5 = 6(5)^2 - 9(5) + 6 = 111$	\checkmark constant second diff = 12 \checkmark first differences : 33 and 45 \checkmark substitute 5 (2) OR/OF \checkmark constant second diff = 12 \checkmark substitute 5 (2)
-------	--	--

2.2.2	$2a = 12$ $a = 6$ $3(6) + b = 9$ or $5 \times 6 + b = 21$ $b = -9$ $6 - 9 + c = 3$ $c = 6$ $T_n = 6n^2 - 9n + 6$	$\checkmark 2a = 12$ $\checkmark 3(6) + b = 9 / 5 \times 6 + b = 21$ $\checkmark 6 - 9 + c = 3$ (3)
2.2.3	$T_n' = 12n - 9 > 0$ $n > \frac{3}{4}$ $\therefore T_n$ is increasing for $n \in N$	$\checkmark T_n' = 12n - 9$ $\checkmark n > \frac{3}{4}$ \checkmark increasing for $n \in N$ (3)
	OR/OF $n = -\frac{b}{2a} = -\frac{-9}{2(6)}$ $n = \frac{3}{4}$ \therefore min at $n = 1$ for $n \in N$ $\therefore T_n$ is increasing for $n \in N$	OR/OF $\checkmark n = -\frac{b}{2a} = \frac{9}{2(6)}$ $\checkmark n = \frac{3}{4}$ \checkmark increasing for $n \in N$ (3)

[16]

QUESTION 3/VRAAG 3

<p>3.1</p> $ \begin{array}{c} x ; x ; T_3 ; \dots \\ \diagup \quad \diagdown \\ 0 \quad T_3 - x \\ \diagup \quad \diagdown \\ 10 \end{array} $ $ \begin{array}{ll} 2a = 10 & 3a + b = 0 \\ a = 5 & b = -15 \end{array} $ $ \begin{array}{l} T_3 - x - 0 = 10 \\ \therefore T_3 = x + 10 \end{array} $ $ \begin{array}{ll} 2x + T_3 = 28 & 2x + T_3 = 28 \\ 2x + x + 10 = 28 & \\ 3x = 18 & \\ x = 6 & \checkmark x = 6 \end{array} $ $ \begin{array}{ll} a + b + c = 6 & \\ 5 - 15 + c = 6 & \checkmark 5 - 15 + c = 6 \\ c = 16 & \\ \therefore T_n = 5n^2 - 15n + 16 & (6) \end{array} $	$ \begin{array}{ll} \checkmark 2a = 10 & \\ \checkmark 3a + b = 0 & \\ \checkmark T_3 = x + 10 & \\ \checkmark 2x + T_3 = 28 & \\ \checkmark x = 6 & \\ \checkmark 5 - 15 + c = 6 & \\ \hline \end{array} $ <p>OR/OF</p> $ \begin{array}{ll} 2a = 10 & \checkmark 2a = 10 \\ \therefore a = 5 & \\ \hline \end{array} $ $ \begin{array}{llll} T_1 = a + b + c & T_2 = 4a + 2b + c & T_3 = 9a + 3b + c \\ = 5 + b + c & = 20 + 2b + c & = 45 + 3b + c \end{array} $ $ \begin{array}{ll} 5 + b + c = 20 + 2b + c & \checkmark 5 + b + c = 20 + 2b + c \\ b = -15 & \\ \hline \end{array} $ $ \begin{array}{lll} T_1 = -10 + c & T_2 = -10 + c & T_3 = c \\ \hline \end{array} $ $ \begin{array}{ll} T_1 + T_2 + T_3 = -10 + c - 10 + c + c & \checkmark T_1 = -10 + c \\ 28 = 3c - 20 & \checkmark T_2 = -10 + c \\ c = 16 & \checkmark 28 = 3c - 20 \\ & \checkmark c = 16 \end{array} $
--	---

SEQUENCES AND SERIES (QUADRATIC NUMBER PATTERN)

3.2	$T_n = 5n^2 - 15n + 16$ $216 = 5n^2 - 15n + 16$ $5n^2 - 15n - 200 = 0$ $n^2 - 3n - 40 = 0$ $(n-8)(n+5) = 0$ $n = 8 \text{ or } n \neq -5$ $\therefore T_8 = 216$	✓ equating ✓ standard form ✓ $n = 8$ (3)
		[9]

QUESTION 3/VRAAG 3

3.1	$3a + b = 7$ $3 + b = 7$ $b = 4$ OR/OF $T_2 - T_1 = 7$ $4 + 2b + 9 - (1 + b + 9) = 7$ $b = 4$	✓ $3a + b = 7$ ✓ $3 + b = 7$ (2) OR/OF ✓ $T_2 - T_1 = 7$ ✓ substitution (2)
3.2	$T_n = n^2 + 4n + 9$ $T_{60} = (60)^2 + 4(60) + 9$ = 3849	✓ substitution ✓ answer (2)
3.3	$14 ; 21 ; 30 ; 41 ; \dots$ First difference: $7 ; 9 ; 11 ; \dots$ Common 2^{nd} difference: 2 $T_p = 2p + 5$	✓ first difference ✓ 2 ✓ $2p + 5$ (3) OR/OF First difference: $7 ; 9 ; 11 ; \dots$ $T_n = a + (n-1)d$ $T_p = 7 + (p-1)(2)$ $T_p = 2p + 5$
3.4	$157 = 2p + 5$ $p = 76$ \therefore Between T_{76} and T_{77} OR/OF $T_{n+1} - T_n = 157$ $(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$ $n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$ $2n = 152$ $n = 76$ \therefore Between T_{76} and T_{77}	✓ $157 = 2p + 5$ ✓ $p = 76$ ✓ T_{76} and T_{77} (3) OR/OF ✓ $T_{n+1} - T_n = 157$ ✓ $n = 76$ ✓ T_{76} and T_{77} (3)

[10]